
90 Breakthroughs
To celebrate Berkeley Lab’s nine decades of transforming discovery science into solutions that benefit the world, we’ll roll out 90 Berkeley Lab breakthroughs over the next several months. These landmark achievements — by no means a comprehensive list and in no particular order — offer a tour of some of the many game-changing discoveries developed at Berkeley Lab over the years.
A new batch of breakthroughs will be added periodically until we reach 90.
Here’s the latest…

Invented Particle Accelerators
Ernest Lawrence’s invention of the cyclotron set the stage for particle accelerators worldwide and pioneered improvements for modern accelerators powerful enough to “see” what is within subatomic particles. He won the 1939 Nobel Prize in Physics for his invention of the cyclotron.
Created a Powerful Genetic Engineering Tool
The discovery of the CRISPR-Cas9 genetic engineering technology has radically changed genomics research. Biochemist Jennifer Doudna, a Berkeley Lab faculty scientist, co-won the 2020 Nobel Prize in Chemistry for the discovery. This genome-editing technology enables scientists to change or remove genes quickly, with a precision only dreamed of just a few years ago. Labs worldwide have redirected the course of their research to incorporate this new tool, with huge implications across biology, agriculture, and medicine.

Identified Good & Bad Cholesterol
The battle against heart disease received a boost in the 1960s when Berkeley Lab research unveiled the good and bad sides of cholesterol. Today, diagnostic tests that detect both types of cholesterol save lives.
Expanded the Tree of Life
The Tree of Life, which depicts how life has evolved and diversified on the planet, expanded in 2016 thanks to geoscience expertise at Berkeley Lab and UC Berkeley, which discovered a vast number of microorganisms from a Colorado aquifer, reshaping our understanding of Earth’s biological organization.

Discovered New States of Matter
Using Berkeley Lab’s Advanced Light Source, researchers in 2009 made the first experimental discovery of topological materials – a new state of matter that could enable nanoscale spintronic devices and fault-tolerant quantum computers.
Built a System to Keep Data Science Flowing
To meet scientific demands for faster speeds and larger data capacity, global research networks like ESnet built a high-speed internet backbone to connect researchers to supercomputing centers and experimental facilities. But firewalls at the local network borders can significantly slow network speeds. Starting in 2010, ESnet researchers crafted a solution called “Science DMZ.”

Confirmed the Big Bang
George Smoot shared the 2006 Nobel Prize in Physics for the discovery of subtle irregularities in the cosmic microwave background radiation, the faint thermal afterglow from the Big Bang. These irregularities led to the condensation of matter into gas clouds, stars, and galaxies.
Made Building Responsive to the Grid
Berkeley Lab-led work developed the Open Automated Demand Response communication system, an open-source interface that lets electricity providers send signals about price and grid needs directly to customers over the Internet, helping to facilitate clean, reliable energy use. As a result of the effort started in the early 2000s, it is now the most widely used open standard for such communications around the world, and essential for modernizing our electricity grid.

Set Records for Tabletop Accelerator
A Berkeley lab team ramped up the energy of the compact laser-plasma accelerator, setting a world record in 2012 and eclipsing it in 2018 in their ongoing push toward ever higher energy. By shrinking accelerators, our researchers are paving the way for applications that range from next-generation cancer treatments to answering fundamental questions of physics.
Enabled the First Portable Medical Gamma Camera
Berkeley Lab scientists adapted an ultra-sensitive charge-coupled device (CCD) and photodiode for a supercollider gamma ray detector, into a light sensor for medical imaging. The technology, developed in the mid 1990’s, is now used in a compact, portable solid state gamma camera on wheels, a huge improvement over stationary cameras weighing 2 tons.